
Advance BPEL execution adaptation using QoS 

parameters and collaborative filtering techniques 

Dionisios D. Margaris* 

National and Kapodistrian University of Athens 

Department of Informatics and Telecommunications 

margaris@di.uoa.gr 

Abstract. In this thesis, frameworks for providing runtime adaptation for 

BPEL scenarios are proposed. The adaptation is based on (a) quality of service 

parameters of available web services (b) quality of service policies specified by 

users and (c) collaborative filtering techniques, allowing clients to further refine 

the adaptation process by considering service selections made by other clients. 

1  Introduction
1
 

Web Services are considered a dominant standard for distributed application com-

munication over the internet. Consumer applications can locate and invoke complex 

functionality, through widespread XML-based protocols, without any concern about 

technological decisions or implementation details on the side of the service provider. 

Web Services Business Process Execution Language (WS-BPEL) [1] allows design-

ers to orchestrate individual services so as to construct higher level business process-

es; the orchestration specification is expressed in an XML-based language, and it is 

deployed in a BPEL execution engine, made thus available for invocation by consum-

ers. -BPEL has been designed to model business processes that are fairly stable, and 

thus involve the invocation of web services that are known beforehand.  

In this dissertation an adaptation algorithm uses both QoS specifications and se-

mantic-based collaborative filtering personalization techniques to decide which of-

fered services best fit the client’s profile is presented. To achieve this goal, the 

metasearch algorithm paradigm [4] is followed, using two different candidate adapta-

tion ranking algorithms, the first examining the QoS aspects only and the second be-

ing based on collaborative filtering techniques. The adaptation rankings produced by 

these two algorithms are combined to generate the overall ranking, which then drives 

the adaptation. The combination of the results is performed using a weighted 

metasearch score combination algorithm ([4][5]), however varying weights are used 

to address issues associated with collaborative filtering, such as cold start (i.e. few 

entries recorded in the rating database, thus no good matches can be obtained) and 

                                                           
*Dissertation Advisor: Panayiotis Georgiadis, Emeritus Professor 



gray sheep (i.e. unusual users, which cannot be matched with other users even after 

the database has been adequately populated). 

The adaptation is based on (a) quality of service parameters of available web ser-

vices (b) quality of service policies specified by users and (c) collaborative filtering 

techniques, allowing clients to further refine the adaptation process by considering 

service selections made by other clients. 

The combined proposed BPEL execution framework includes provisions for  

(a) specifying QoS requirements for invocations of web services within a WS-BPEL 

scenario  

(b) specifying specific bindings for selecting services and designating which services 

are subject to adaptation, 

(c) adapting the WS-BPEL scenario execution according to the results of the service 

selection algorithm, 

(d) monitoring the behavior of the invoked services regarding their QoS aspects, 

(e) collecting user satisfaction feedback about the invoked services and taking these 

data into account when formulating recommendations and 

(f) caters maintaining the transactional semantics that invocations to multiple services 

offered by the same provider may bear. 

This approach follows the horizontal adaptation paradigm since, as noted in [2], 

horizontal adaptation preserves the execution flow which has been crafted by the 

designer to reflect particularities of the business process, while it also allows the ex-

ploitation of specialized exception handlers.  

2 Related Work 

As stated above, existing adaptation approaches follow either the horizontal or the 

vertical adaptation approach. [4] performs horizontal QoS-based adaptation, taking 

into account the sequential and parallel execution structures within the BPEL scenar-

io. Note that none of above approaches incorporates CF techniques to enhance the 

quality of the adaptation. [5] presents CF techniques to drive the adaptation, and an 

associated execution framework, it however uses very limited QoS-based criteria 

(only a lower and an upper bound for each QoS attribute), hence it runs the risk of 

formulating solutions whose QoS is much inferior to the optimal composition QoS 

that can be attained, especially in cases that CF has known issues (e.g. cold start and 

gray sheep). In order to perform QoS/CF-based adaptation or exception resolution, all 

approaches employ means to formally specify the services’ functionality; techniques 

involving QoS characteristics need additionally to have access the services’ QoS at-

tribute values. In this work, we adopt the subsumption relationship approach [18] due 

to its expressiveness and flexibility. An important aspect of QoS attributes is that their 

values may vary, according to server load, network conditions or other relevant fac-

tors. To this end, work in [19] is adopted to allow a more accurate estimation of QoS 

attribute values; this increased accuracy can be used in adaptation systems to improve 

the quality of the adaptation. 



3 QoS AND CF UNDERPINNINGS 

 

In the following subsections we summarize the underpinnings from the areas of QoS 

and CF, which are used in our work. 

3.1 QoS concepts 

For conciseness purposes, in this paper we will consider only the attributes 

responseTime (rt), cost (c) and availability (av), adopting their definitions from [9]. 

This does not lead to loss of generality, since the algorithms can be straightforwardly 

extended to accommodate more attributes. The QoS specifications for a service within 

the BPEL scenario may include an upper bound and a lower bound for each QoS at-

tribute, i.e. for each service sj included in a BPEL scenario, the designer formulates 

two vectors MINj=(minrt,j, minc,j, minav,j) and MAXj=(maxrt,j, maxc,j, maxav,j). 

Additionally the designer formulates a weight vector W=(rtw, cw, avw), indicating 

how important each QoS attribute is considered by the designer in the context of the 

particular operation invocation. The values of the QoS attributes are assumed to be 

expressed in a “larger values are better” setup, e.g. a service having cost = 6 means 

that that it is cheaper than a service having cost = 4. In order to compute the QoS 

attribute values of a service S composed from constituent services s1, …, sn having 

QoS attributes equal to (rt1, c1, av1), …, (rtn, cn, avn), respectively, the formulas 

given in table 1 [10] can be used. Note that these formulas do not take into account 

the possibility that some service is executed multiple times within a loop or condi-

tionally with a probability of p; these aspects will be considered in our future work. 

 

 QoS attribute 

 responseTime cost availability 

Sequential 

composition 


n

i

irt
1

 


n

i

ic
1

 




n

i

iav
1

 

Parallel 

composition )max( i
i

rt
 




n

i

ic
1

 




n

i

iav
1

 

Table 1. QoS of composite services 

 

Most works dealing with QoS-based BPEL scenario execution adaptation, consider 

given QoS attribute values for each service, which can be for instance declared by the 

service provider within an SLA. However, in the real world, QoS metrics such as 

response time and availability may vary, due to server or network conditions (failures, 

overloads, bottlenecks etc). To tackle this issue, in this paper, we employ prediction 



models for QoS attribute values, in order to use in the recommentation process values 

that are closer to the actual ones, improving thus the accuracy of the adaptation. In 

particular, we adopt [7] and [8] for predicting the service response time and service 

availability, respectively. Both these algorithms predict future performance of ser-

vices by examining past measurements; the platform proposed in this work collects 

these measurements when invoking services in the context of BPEL scenario execu-

tions and makes them available to the modules predicting the future QoS values. 

3.2 Subsumption relationship representation 

In order to adapt the BPEL scenario execution, the adaptation engine needs to be able 

to find which services offer the same functionality, and are thus candidate for invoca-

tion when this particular functionality is needed. In this work, we represent this in-

formation using subsumption relationships [6] which, for any pair of services S1 and 

S2 defined as follows: (i) S1 exact S2, iff S1 provides the same functionality with S2 

(ii) S1 plugin S2, iff S1 provides more specific functionality than S2; in this case S1 

could be used whenever the functionality of S2 is needed, since it delivers (a speciali-

zation of) the functionality delivered by S2 (iii) S1 subsume S2, iff S2 provides more 

generic functionality than S2. In this case S1 cannot unconditionally be used whenev-

er the functionality of S2 is needed and (iv) S1 fail S2, in all other cases; in this case, 

S2 cannot be substituted for S2. Under these definitions, a service A can be uncondi-

tionally substituted by a service B if (A exact B or A plugin B); this setup provides 

more flexibility as compared to strict service equivalence (A exact B) regarding the 

formulation of the adapted execution plan, and is hence adopted in this paper. Effec-

tively, subsumption relationships organize services in a tree, where generic services 

are located towards the root and more specific services towards the leaves [6]. Tree 

nodes, besides service identity, can accommodate QoS values for the services they 

represent; this information can be stored in repositories such as OPUCE [11]. Fig. 1 

shows an excerpt of a subsumption relationships tree. 



 

Fig. 1. Example subsumption relationships tree 

3.3 Designations on specific service bindings and functionality omissions 

As noted above, users may wish to designate exact services to be invoked for realiz-

ing specific functionalities, while asking for recommendations on other ones. For 

instance, in a travel planning scenario the consumer may request that s/he travels by 

“Sea Lines”. Further, the consumer may also specify that some functionality optional-

ly included in the BPEL scenario is not executed; for example, a tourist may not want 

to rent a car, while such a provision is present in the scenario. Typically, the BPEL 

code will examine input parameters and decide using a conditional execution con-

struct (<switch>) whether to invoke the functionality or not. Finally, functionalities 

that are neither explicitly bound to specific services, nor are designated as “not to be 

executed” are subject to adaptation. We consider that specific bindings and designa-

tions for functionality omissions are explicitly expressed in the request for scenario 

invocations. 

3.4 Usage patterns repository 

In order to perform CF-based adaptation, a repository with user ratings for services is 

required. In this paper, we adopt the representation used in [5], where the ratings re-

pository is modeled as a table having a number of columns equal to the functionalities 

present in the BPEL scenario, and one row for each BPEL scenario execution. Cell i,j 

is filled with value S if during the ith execution of the BPEL scenario, service S was 

used to implement functionality j; cell (i, j) may be also blank, if during the ith execu-

tion of the BPEL scenario functionality j was omitted. In order to accommodate user 

ratings, we extend this repository by adding one column per functionality. This col-



umn stores an integer value from the domain [1, 10], corresponding to the rating giv-

en by the user that executed the particular scenario instance. For the cases that the 

user has not provided a rating, a null value is stored and the CF-based algorithm uses 

a default value, as explained in section 4. The BPEL scenario adaptation module in-

serts new records to the usage patterns repository (UPR), when the concrete services 

that will be invoked in the context of a particular BPEL scenario execution are decid-

ed, while the user evaluation collection module arranges for storing user rankings in 

the relevant columns. Table 2 presents an example UPR. 

 

# exec Travel Hotel Event 

1 OlympicAirways YouthHostel ChampionsLeague 

2 SwissAir Hilton GrandConcert 

3 HighSpeedVessels YouthHostel  

4 LuxuryBuses  EuroleagueFinals 

5 Lufthansa YouthHostel GrandConcert 

6 AirFrance Hilton  

7 SwissAir YouthHostel ChampionsLeague 

Table 2. Example usage patterns repository 

4 THE SERVICE RECOMMENDATION ALGORITHM 

As stated in section 1, our approach follows the horizontal adaptation paradigm, leav-

ing the composition logic intact and adapting the execution by selecting which con-

crete service implementation will be used in each specific invocation. To perform this 

task, the algorithm takes into account the following criteria: 

 The consumer’s QoS specifications (bounds and weights). 

 Designations on which exact services should be invoked, if such bindings are re-

quested by the consumer (e.g. a user wanting to travel using Air France). 

 Designations on which functionalities should not be invoked 

(e.g. a user wanting to book a trip without scheduling any event attendance). 

 The QoS characteristics of the available service implementations, including moni-

tored values of the QoS attributes of the services. 

 The service subsumption relationships. 

 The UPR, which includes user ratings. 

The approach proposed in this paper incorporates two different candidate service 

ranking algorithms, the first examining the QoS aspects only ([4]) and the second 

being based on CF techniques ([5]). The algorithms run in parallel to formulate their 

suggestions regarding the services that should be used in the adapted execution, and 

subsequently their suggestions are combined, through a metasearch score combination 

algorithm with varying weights. 



4.1 The QoS-based adaptation algorithm 

The QoS-based adaptation algorithm initially identifies the services which are candi-

date to be used for delivering functionalities in the context of the current BPEL sce-

nario, respecting the QoS-bounds set by the user, and subsequently computes the k-

best service assignments to the functionalities requested for the particular scenario 

execution. In more detail, the algorithm proceeds as follows: 

 For each functionality fi for which adaptation has been requested, the algorithm 

retrieves from the semantic service repository the concrete services that (a) deliver 

this functionality and (b) respect the QoS bounds set by the users. These are the can-

didates for implementing functionality fi. Formally, this is expressed as 

                                                                     
                                              
             

Note that in all steps of this algorithm, the QoS values for response time and availa-

bility considered for each service are those returned by predictor methods [7] and [8], 

respectively. 

 Subsequently, the algorithm formulates an integer programming problem to com-

pute the k-best solutions regarding the assignment of concrete services si,j to each 

functionality fi. To express the integer programming optimization problem in this 

work we adopt the concrete service utility function used in [13], which is  

         
                  

                 
   

 
    where qk(si,j) is the value of the kth QoS at-

tribute of concrete service si,j (the first QoS attribute being response time, the second 

cost and the third one availability), wk being the weight assigned to the kth QoS at-

tribute, [i.e. the maximum value of QoS attribute k among possible concrete service 

assignments for functionality fi], and Qmax’ [resp. Qmin’] being the overall maximum 

(resp. minimum) value of QoS attribute k within the service repository. Using the 

utility function, the computation of the best solution is expressed as the following 

integer programming problem: maximize the overall utility value given by 

                     
    
   

 
    , where F is the number of functionalities fi 

requiring adaptation, and each xj,i is a binary variable taking the value 1 if ij,j is select-

ed for delivering functionality fi, and 0, otherwise. Since each functionality fi is deliv-

ered in the final execution plan by exactly one concrete service, the maximization of 

the utility value is subject to the constraint  

          

    

   

    

This problem is then solved and the k-best solutions are obtained. Note that this for-

mulation employs the sum function to rate the availability of the composite service 

taking into account the availability values of the constituent services, rather than the 

product function, as denoted in table 1. 

Note that although integer programming is NP-hard, in practice, solving techniques 

employ a number of speed up factors namely cutting planes, presolve, branching 

rules, heuristics, node presolve and probing on dives [17], with each speed up factor 

providing a speed up ranging from 53.7% (cutting planes) to 1.1% (probing on dives); 



therefore the time taken by solvers to compute the solution is much lower than the 

worst-case (NP-hard) complexity. The solutions are saved, together with their overall 

utility score, for perusal in the combination step. In order to solve the integer pro-

gramming problem computing the k-best solutions, the IBM ILOG CPLEX 

(www.ibm.com/software/commerce/optimization/cplexoptimizer/) optimizer was 

used. In our implementation, we have set k=20. 

4.2 The CF-based algorithm 

The CF-based algorithm employed in our proposal is an adaptation of the standard 

GroupLens algorithm [14], modified to take into account the semantic distance of the 

services realizing the same functionality. For instance, rows 2 and 5 of table 2 are 

considered “semantically close”, since they both list air transport for travel, a first 

class hotel for accommodation and classical music events; on the other hand rows 2 

and 7 of the same table are considered “semantically distant”, since all three services 

correspond to diverse real world counterparts (air travel vs. bus, 1st class hotel vs. 3
rd

 

class, concert vs. sports). Taking this into account, when a request arrives asking for 

travel via AirFrance and accommodation in GrandResort and requesting a recommen-

dation for event attendance, the ratings in rows 2 and 7 must be taken more strongly 

into account than those in row 7, since the former two rows are “closer” to the one 

under adaptation. To accommodate this adaptation, we extend the formula of cosine 

similarity between two rows   ,       of the UPR as follows:  

          
                                

   

          
  

We can observe in equation (2) that the standard cosine similarity metric has been 

extended to accommodate the semantic distance between the services that realize the 

same functionality in rows    and    ; this is accomplished by multiplying each term of 

the sum in the nominator by a metric of the semantic distance between the two ser-

vices, which is denoted as d(s1, s2) and is computed using the formula introduced in 

[15]: d(s1,s2) = C – lw*PathLength – NumberOfDownDirection, where C is a constant 

set to 8 [15], lw is the level weight for each path in subsumption tree (cf. Fig. 1), 

PathLength is the number of edges counted from functionality s1 to functionality s2 

and Number-OfDownDirection is the number of edges counted in the directed path 

between functionality s1 and s2 and whose direction is towards a lower level in the 

subsumption tree. For more details in the computation of the semantic distance, the 

interested reader is referred to [15]. We further normalize this similarity metric in the 

range [0, 1] by dividing the result computed in the above formula by 8; this way, the 

multiplication by the normalized similarity metric in equation (2) reduces the correla-

tion coefficient between the two rows by a factor proportional to the semantic dis-

tance of the services employed in these rows to realize the same functionality. For 

items not explicitly rated, we follow the rationale of [5] according to which usage of a 

service is an indication of preference, and we choose a rating equal to the 80% of the 

maximum rating. This is inline with the findings of [16], which asserts that dissatis-

fied users will provide negative feedback with a very high probability (≥89%). Rows 

that have not been rated at all (and therefore have a default value for all ratings) are 

the reason behind choosing the cosine similarity against the Pearson similarity, since 

http://www.ibm.com/software/commerce/optimization/cplexoptimizer/


the latter disregards rows whose ratings have no variance (i.e. are all equal). Using the 

modified cosine similarity, the CF-based algorithm operates as follows: 

1. It retrieves from the UPR all rows that contain a service implementing the func-

tionality on which a recommendation is requested. For example, if a recommendation 

on event attendance is requested, only rows 1, 2, 4, 5 and 7 of table 2 will be re-

trieved. 

2. The rows retrieved from step 1 are filtered to retain only those that fulfill the QoS 

criteria requested by the user. 

3. The similarities between the request and each row are computed using the modified 

cosine similarity metric. The request is represented here as a vector vector    , having a 

rating equal to 10 for each functionality included in the scenario and a rating equal to 

0 for each functionality designated as not to be executed. 

4. For each distinct service implementing the requested functionality that is included 

in the remaining rows, we compute its rating prediction using the standard rating pre-

diction formula  

              
 

         
                                         

                               

 

[14] (we again do not subtract the mean         from           , so as not to render useless 

the rows having only default values). 

5. Finally, we retain the 20-best services, for each functionality requiring adaptation, 

for perusal in the combination step.  

After the lists of candidates for each individual service that is subject to adaptation 

have been computed, the algorithm selects the top-20 execution plans with respect to 

their CF-score. Given an execution plan containing services (s1,i, …, sN,k) with the 

similarity scores of the services computed in step 5 being (CFS(s1,i), …, CFS(sN,,k)), 

then the CF-score of the execution plan is equal to CFS(s1,i)+…+CFS(sN,k). Compu-

ting the top-20 execution plans is modeled as an integer programming optimization 

problem, formulated in a similar fashion to the one described in section 4.1. Full de-

tails on the formulation of the integer programming optimization problem are given in 

[12]. The CF module has been implemented using Apache Mahout 

(https://mahout.apache.org/), by subclassing the UncenteredCosineSimilarity class 

and reimplementing in the subclass the UserSimilarity method, to accommodate the 

semantic similarity metric described above. 

4.3 The combination step 

The combination step synthesizes the results given by individual algorithms to pro-

duce a single result. Recall from the previous two subsections that each algorithm 

produces a set of candidate execution plans, with each execution plan being tagged 

with the relevant normalized score (QoS-score or CF-score). In order to combine the 

scores, we use the CombMNZ metasearch algorithm, since it has been found to have 

the best performance [3] [the CombMNZ rating of a solution is computed by multi-

plying the sum of the individual scores by the number of non-zero scores, i.e. where 

mi is the number of algorithms giving non-zero rating to item i and rj(i) is the rating 

given by algorithm j to item i]. After computing the CombMNZ metasearch for all 



candidate execution plans, the combination step selects the execution plan with the 

highest score, which will be used to drive the adaptation process. 

 

Fig. 2. The execution adaptation architecture 

4.4 The execution adaptation architecture 

The execution adaptation architecture, illustrated in Fig. 2, follows the middleware-

based approach, with an adaptation layer intercepting web service invocations and 

appropriately directing them to the services chosen by the adaptation algorithm. As 

shown in Fig. 2, the BPEL scenario execution initially passes to the adaptation layer 

the information regarding service invocations that will be performed, QoS bounds and 

weights as well as specific service bindings. When the adaptation layer receives this 

information, it applies the adaptation algorithm to formulate the execution plan for the 

particular scenario execution (i.e. decide the actual services that will be invoked to 

deliver each functionality) and stores the execution plan for later perusal. Subsequent-

ly, when a web service invocation is intercepted by the adaptation layer, the respec-

tive execution plan is retrieved from the execution plan storage, the web service de-

cided to deliver the specific functionality is extracted and the invocation is routed to 

that service. Note that steps (4)-(8) depicted in Fig. 2 are repeated multiple times 

within each BPEL scenario execution, once per web service invocation performed. 

When the invocation to a service implementation has concluded, the data regarding 

the service’s response time and availability are passed to the QoS prediction and up-

date module, which computes the predicted values for the respective QoS parameters 

and updates the corresponding elements in the semantic service repository. Addition-

ally, the BPEL scenario returns at the end of its execution, along with the result, an 

evaluation token, which the consumer may use to enter the ratings for the services 

s/he has used in the context of the BPEL scenario execution. The evaluation token is 

returned in the response headers, to retain the response payload schema intact. To 

accommodate this additional functionality (passing the necessary information to the 

adaptation layer and returning the evaluation token), the BPEL scenario is prepro-

cessed as described in [5] before being deployed to the web services platform, with 

the preprocessing step injecting the necessary invocations to the adaptation layer into 

the scenario, and the result of the preprocessing step is then deployed and made avail-

able for invocations. 

Web Services Platform

WS-BPEL Orchestrator

Consumer

(1)
BPEL scenario 

invocation +
QoS bounds + binding 

requirements

Adaptation layer

(2) information 
about service 

invocations, QoS 
bounds & weights 

and bindings

(9)
Results + 
evaluation 

token

WS-1 WS-n...WS-2

Web Service Implementations

(5) Invocation (6) Results 

(4)
web service call

Web service 
invocation redirection

(8) Result

(subsumption 

relationships & QoS 

attributes)

Semantic

service

repository

Usage pattern

repository (inc.

ratings)

Combination 
step

Execution plan formulation

User

feedback

platform

(3) Evaluation 
token Execution

plans

QoS 
prediction 
& update

CF-
based 

algorithm

QoS-
based 

algorithm

(7)
Update

(10)
Evaluation token +

ratings

(11)
Updates to 

usage pattern 
repository



5 CONCLUSIONS AND FUTURE WORK 

In this thesis we have presented a framework for adapting the execution of BPEL 

scenarios, taking into account data from the monitoring of the QoS offered by the 

services, as well as user ratings. To perform the adaptation, we follow the metasearch 

paradigm, by combining two candidate execution plan ranking algorithms. The first 

one examines the execution plan QoS aspects only, while the second is based on CF 

techniques. The framework provides means for monitoring the QoS parameters of the 

services and adjusting accordingly the values of the services’ QoS attributes, as well 

as accepting user ratings for the services they have used, which are taken into account 

by the CF-based algorithm. The proposed framework is complemented with an execu-

tion architecture for enacting the adaptation, which adopts the middleware approach, 

with an adaptation layer intervening between the BPEL execution platform and the 

web services and arranging for redirecting service invocations to the services selected 

by the adaptation algorithm. The proposed framework has been experimentally vali-

dated regarding (i) its performance, (ii) the quality of execution plans generated and 

(iii) the effectiveness of the QoS monitoring and estimation mechanisms. The pro-

posed approach has been also found to be scalable, exhibiting a linear increase in the 

imposed overhead. 

Our future work will focus gathering statistical information from prior scenario ex-

ecutions and using it as input to the adaptation process. This information will quantify 

aspects regarding the behavior of control constructs in the scenario. We also plan to 

examine how the algorithm can be extended to consider different adaptation strate-

gies. 

6 REFERENCES 

 [1] OASIS WSBPEL TC. WS-BPEL 2.0. http://docs.oasisopen. 

org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html 

 [2] Kareliotis, C., Vassilakis, C., Rouvas, S., Georgiadis, P. QoS-Driven Adaptation 

of BPEL Scenario Execution. In: Proceedings of ICWS 2009, 271-278, 2009. 

[3] Montague, M., Aslam, J.A. Relevance score normalization for metasearch. In: 

Proceedings of CIKM 2001, 427-433, 2001. 

[4] Margaris, D., Vassilakis, C., Georgiadis, P. An integrated framework for QoS 

based adaptation and exception resolution in WS-BPEL scenarios. In Proceedings of 

the 28th ACM SAC, Coimbra, Portugal, 1900-1906, 2013. 

[5] Margaris, D., Vassilakis, C., Georgiadis, P.: Adapting WSBPEL scenario execu-

tion using collaborative filtering techniques. In: Proceedings of the IEEE 7th RCIS 

Conference, Paris, France, 2013. 

[6] Paolucci, M., Kawamura, T., Payne, T., Sycara, T. Semantic Matching of Web 

Services Capabilities. In: Proceedings of the 2002 International Semantic Web Con-

ference, 333-347, 2002. 



[7] Shao, L., Guo, Y., Chen, X., He, Y. Pattern-Discovery-Based Response Time 

Prediction. In: Advances in Automation and Robotics, vol. 2, LNEE, vol. 123, 355-

362, 2012. 

[8] Duan, Y., Huang, Y. Research on availability prediction model of web service. In: 

Proceedings of the 2011 International Conference on Computer Science and Service 

System, 1590–1594, 2011. 

[9] O’Sullivan, J., Edmond, D., Ter Hofstede, A. What is a Service?: Towards Accu-

rate Description of Non-Functional Properties. Distributed and Parallel Databases, 

12, 2002. 

[10] Canfora, G., Di Penta, M., Esposito, R., Villani, M.L. An 

Approach for QoS-aware Service Composition based on Genetic Algorithms. In: Pro-

ceedings of the 2005 Conference on genetic and evolutionary computation, 1069-

1075, 2005. 

[11] Yu, J., Sheng, Q., Han, J., Wu, Y., Liu, C. A semantically enhanced service re-

pository for user-centric service discovery and management. Data & Knowledge En-

gineering, 72, 202- 218, Feb. 2012. 

[12] Margaris, D., Vassilakis, C., Georgiadis, P. Combining Quality of Service-based 

and Collaborative filtering-based techniques for BPEL scenario execution adaptation. 

University of Peloponnese SDBS Technical report TR-14002, 2014, available at 

http://sdbs.dit.uop.gr/?q=TR-14002 

[13] Alrifai, M., Risse, T. Combining Global Optimization with Local Selection for 

Efficient QoS-aware Service Composition. In: Proceedings of the 18th international 

conference on World Wide Web, 881-890, 2009. 

[14] Saric, A., Hadzikadic, M., Wilson, D Alternative Formulas for Rating Prediction 

Using Collaborative Filtering. In: Proceedings of the 18th International Symposium 

on Foundations of Intelligent Systems, 301-310, 2009. 

[15] Bramantoro, A., Krishnaswamy, S., Indrawan, M. A semantic distance measure 

for matching web services. In: Proceedings of the 2005 International Conference on 

Web Information Systems Engineering,. 217-226, 2005. 

[16] Chelminski, P., Coulter, R. An examination of consumer advocacy and com-

plaining behavior in the context of service failure. Journal of services marketing, 25, 

5, 361–370, 2011. 

[17] Bixby R.E., Fenelon M., Gu Z., Rothberg E., Wunderling R. Mixed integer pro-

gramming: A progress report. Chapter in Martin Grötschel (ed.), The sharpest cut: 

The impact of Manfred Padberg and his work, MPS-SIAM Series on Optimization, 

Vol. 4, 2004 

[18] D. Margaris, C. Vassilakis, P. Georgiadis, “An integrated framework for adapt-

ing WS-BPEL scenario execution using QoS and collaborative filtering techniques”, 

Science of Computer Programming, Volume 98, Part 4, 1 February 2015, Pages 707– 

34, http://www.sciencedirect.com/science/article/pii/S0167642314004778 

[19] D. Margaris, C. Vassilakis, P. Georgiadis, “A hybrid framework for WS-BPEL 

scenario execution adaptation, using monitoring and feedback data”, to appear in the 

30
th

 ACM Symposium on Applied Computing, Salamanca, Spain, 2015. 

 


